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INTRODUCTION 
 
We all work in an industry where the consumer is king. We are constantly trying to 
evolve our products to satisfy the consumer’s changing requirements whilst at the 
same time always looking for the opportunity to develop niche products for new 
markets. However the relationship between beer flavour and its chemical analysis is 
poorly understood. 
Should it prove possible to predict final beer flavours according to their chemical 
composition, then it would open up the possibility of 'tuning' such products to meet 
the expectations of the consumer. The challenge is “Can Beer Flavour Be Predicted 
From Analytical Results ?” 
Substantial empirical data exists, in disparate data sources, concerning product 
chemical and sensory analysis. However, currently there is no mechanism for linking 
them to each other. Any such relationships are undoubtedly complex and highly non-
linear. In order to identify such relationships we have turned our attention to the 
modern techniques of artificial intelligence, and specifically neural networks and 
genetic algorithms. 
The former is associated with machine learning whilst the latter is associated with 
biological evolution. The development of both these fields can be traced back to the 
1960s. However it is only recently, with the rapid expansion in computing power 
combined with the availability of packaged software solutions that these techniques 
have been moved from the computer science laboratory into industry.  
 
Neural Networks 
Neural networks can be visualised as a mechanism for learning complex non-linear 
patterns in data.  A key differentiator from other computer algorithms is that to a very 
limited extent, they model the human brain. This allows them to learn from 
experience; i.e. training, rather than being programmed. However training does 
require significant quantities of data. 
When we were at school we were taught to visualise data by plotting it on a graph and 
joining up the data points. We then progressed to using a technique called linear 
regression which allowed us to calculate the best gradient and intercept parameters for 
a straight line such that the sum of the errors was minimised. Finally, in an attempt to 
achieve a better fit we may have used a polynomial curve fitting programme. The 
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previously described techniques are particularly suited to simple relationships 
involving a very limited number of input variables. 
In contrast to this a neural network model can handle multiple inputs. These can be 
associated with multiple outputs which are mapped via non-linear relationships. The 
process by which a neural network model is developed to provide a best fit function 
between an input and output data set is known as training. During this training process 
the network modifies its own internal parameters, known as weights, so as to 
minimise the difference between the value of the output data set and the values 
predicted by the network. A key requirement during training is that over training 
should be avoided thus ensuring that only generalised models are developed which 
perform equally well on both in sample, and out of sample data. This was achieved 
using a technique called ‘Cross Validation’.  
Further information concerning neural networks and their application can be found in 
references [1], [2] and [3].  
 
Genetic Algorithms 
These provide a means of solving complex mathematical models where we know 
what a good solution looks like but which can not be solved using conventional 
algebra. The basis of this technique is very simple, Darwin’s theory of evolution, and 
specifically survival of the fittest. Much of the terminology is borrowed from biology.  
A population is made of a series of chromosomes with each chromosome representing 
a possible solution. A chromosome is made up of a collection of genes which are 
simply the variables to be optimized.   
A genetic algorithm creates an initial population (a collection of chromosomes), 
evaluates this population, and then evolves the population through multiple 
generations. At the end of each generation the fittest chromosomes, i.e. those that 
represent the best solution, from the population are retained and are allowed to 
crossover with other fit members. The idea behind crossover is that the newly created 
chromosomes may be fitter than both of the parents if it takes the best characteristics 
from each of the parents. Thus over a number of generations, the fitness of the 
chromosome population will increase with the genes within the fittest chromosome 
representing the optimal solution. The whole process is similar to the way in which a 
living species will evolve to match its changing environment. 
Introductory information concerning genetic algorithms may be found in reference [4] 
whilst more advanced material concerning their application may be found in reference 
[5]. 

THE FLAVOUR MODEL 

Coors Brewers Limited is fortunate enough to have a significant amount of final 
product analytical data which has been accumulated over a period of years. This has 
been complimented by sensory data which has been provided by the trained in-house 
testing panel. The range of analytical and sensory measures available is shown in 
table 1.  
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Analytical Data - Inputs  Sensory Data - Outputs 
OG  Alcohol 
PG  Estery 
FG  Malty 
FR (Max)  Grainy 
Alcohol  Burnt 
Colour  Hoppy 
CO2 Keg  Toffee 
pH  Sweet 
HPLC Isoacids  DMS 
HPLC Tetra  Warming 
Calculated Bitterness  Bitter 
Diacetyl  Thick 
Chloride   
Sulphate   
Acetaldehyde (Max)   
DMS   
2-Me Butanol   
3-Me Butanol   
Total IAA   
Ethyl Acetate   
Iso Butyl Acetate   
Ethyl Butyrate   
Iso Amyl Acetate   
Ethyl Hexanoate   
 
Table 1: Available Analytical Inputs and Sensory Outputs 
 
 
Initial attempts at modelling the relationship between the analytical and sensory data 
were restricted to a single quality and flavour and focussed on mapping all available 
inputs through a single neural network as shown in figure 2. 
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Figure 2: Simple Network 
 
 
The available data consisted of 350 records which were divided into training (80%) 
and cross validation (20%) data sets. The neural network was based on Multilayer 
Perceptron (MLP) architecture with two hidden layers. All data was normalised 
within the network thereby enabling the results for the various sensory outputs to be 
compared. Training was terminated automatically when no improvement in the 
network error was observed during the last one hundred epochs.  In all cases training 
was carried out fifty times to ensure that a significant mean network error could be 
calculated for comparison purposes. Prior to each training run the source data records 
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were randomised to ensure a different training and cross validation data set was 
presented, thereby removing any bias. 
The neural network was based on a package solution supplied by NeuroDimension 
(www.nd.com).  
Results using this technique were poor. This was thought to be due to two major 
factors. Firstly by concentrating on a single product quality the amount of variation in 
the data was low. This therefore presented the neural network with a very limited 
opportunity to exact useful relationships from the data. Secondly it was likely that 
only a subset of the available inputs would impact on the selected beer flavour. Those 
inputs which had no impact on favour were effectively contributing noise, thus 
hindering the performance of the neural network. 
 
The first factor was readily addressed by extending the training data to cover a more 
diverse product range. 
 
Identification of Relevant Analytical Inputs 
The problem with identifying the most significant analytical inputs was more 
challenging. This was addressed by means of a software switch, see figure 3, which 
enabled the neural network to be trained on all possible combinations of inputs. The 
premise behind using a switch is that if a significant input is disabled then we would 
expect the network error to increase, while conversely if the disabled input was 
insignificant then the network error would either remain unchanged or reduce, due to 
the removal of noise. Such an approach is known as an exhaustive search since all 
possible combinations would be evaluated. Although the technique was 
conceptionally simple it was quickly realised that with the present twenty-four inputs 
the number of possible combinations, at 16.7 million per flavour was computationally 
impractical.  
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Figure 3: Network with Switched Inputs - Exhaustive Search 
 
 
What was required was a more efficient method of searching for the relevant inputs. 
The solution to the problem was to use a genetic algorithm, see figure 4, which would 
manipulate the various input switches in response to the error term from the neural 
network. The goal of the genetic algorithm was to minimise the network error term. 
The switch settings made when this minimum was reached would identify those 
analytical inputs which could best be used to predict the flavour.  
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Figure 4: Network with Switched Inputs Controlled by a Genetic Algorithm 
 
 
The results of this work are summarised in table 5. 
 
Analytical 

Input Sensory Output 

 

Alcohol 

 

Estery 

 

Malty 

 

Grainy 

 

Burnt 

 

Hoppy 

 

Toffee 

 

Sweet 

 

DMS 

 

Warming 

 

Bitter 

 

Thick 

 

Iso Butyl Acetate No No No No No No No No No No No No 

Alcohol No No No No No No No No Yes No No No 

Diacetyl No No No No No No Yes No No No Yes No 

Ethyl Acetate No No No Yes No No No No No Yes No No 

FG No No Yes No No Yes No No Yes No No No 

FR (Max) No No No No No No No Yes No Yes Yes Yes 

HPLC Isoacids No No Yes Yes No No No No No Yes Yes No 

2-Me Butanol No No No Yes No Yes Yes Yes No No No No 

Iso Amyl Acetate No Yes Yes No No Yes No No Yes No No No 

Ethyl Hexanoate No No Yes No No Yes Yes No Yes No No No 

pH No Yes No No Yes Yes Yes No Yes No No Yes 

Chloride No No Yes No No Yes Yes Yes Yes Yes No No 

3-Me Butanol Yes No No Yes No No Yes No No Yes Yes Yes 

Total IAA No No No No Yes Yes Yes Yes No Yes No Yes 

OG Yes No No No Yes Yes Yes No Yes No Yes Yes 

PG Yes Yes No Yes No Yes No No Yes Yes Yes No 

Sulphate Yes No No Yes Yes No Yes Yes No Yes Yes No 

Acetaldehyde (Max) Yes Yes No No No Yes No Yes Yes No Yes Yes 

Ethyl Butyrate No No No No Yes Yes Yes No Yes Yes Yes Yes 

Colour No Yes Yes Yes Yes Yes No No Yes Yes Yes No 

CO2 Keg No Yes Yes Yes Yes No No Yes Yes Yes Yes No 

HPLC Tetra Yes No Yes Yes No Yes Yes No No Yes Yes Yes 

Calculated 

Bitterness Yes Yes Yes No No Yes No Yes Yes Yes No Yes 

DMS Yes Yes Yes No Yes Yes No Yes Yes No Yes Yes 

 
Figure 5: Relevant Analytical Inputs as a Function of Sensory Output 
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The above results suggest that in some instances, i.e. Iso Butyl Acetate there was no 
discernable relationship between the analytical input and any flavour whilst in other 
cases, i.e. DMS, the input may impact on a large number of flavours. It was also 
evident that typically any one flavour may be influenced by a large number of inputs. 
For example the DMS flavour was found to be influenced by fourteen of the total of 
twenty four available inputs. Although this work identified which inputs were relevant 
it did not allow the relative significance of each input to be calculated. 
 
Prediction of Beer Flavour 
Having determined which inputs were relevant it was now possible to identify which 
flavours could be more ably predicted. This was done by training the network, using 
the relevant inputs previously identified multiple times. Prior to each training run the 
network data was randomised to ensure that a different training and cross validation 
data set was used. After each training run the network error was recorded. A good 
flavour predictor should have both a small network error and associated standard 
deviation. The results, see figure 6, indicated that it should be possible to predict the 
‘Burnt’ and ‘DMS’ flavours and yet would only poorly predict those flavours with 
low scores such as the alcohol flavour. 
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Figure 6: Estimate of Quality of Prediction 
 
However the acid test is “Can the flavour be predicted based on out of sample data”? 
To answer this question the available analytical and sensory data was divided into 
three unequal sets. These were used respectively for training, cross validation and 
testing. The network was trained using the training and cross validation sets. The 
testing set, which was comprised of approximately eighty records of out of sample 
data, was used for assessing the performance of the trained network. 
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Firstly we turn our attention to the ‘Burnt’ flavour. A correlation coefficient of 0.87 
was achieved showing good correlation between the predicted burnt flavour from the 
neural network and the flavour as determined by the sensory results, see figure 7. 
However there are still shortfalls in predicting peak sensory values. Nevertheless this 
model does show a degree of robustness.  
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Figure 7: Neural Network Burnt Flavour Prediction Vs Sensory Results 

 
Unfortunately one of the shortcomings of neural networks is that they do not explain 
their results nor do they provide a readily available mathematical equation. This 
disadvantage can be addressed to a limited degree by probing the model to understand 
which analytical inputs are important. This process is generally known as sensitivity 
analysis. For the ‘Burnt’ flavour each analytical input was individually ‘disturbed’ by 
ten percent and the change in output, the predicted ‘Burnt’ flavour was measured and 
expressed as a percentage. As can be seen from figure 8 an increase in Carbon 
Dioxide was found to decrease the ‘Burnt’ flavour whilst increasing IAA would tend 
to promote the flavour. On a cautionary note it should be appreciated that neural 
networks simply recognise patterns in data and therefore such sensitivity results do 
not necessarily imply a cause and affect relationship. 
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Figure 8: Sensitivity Analysis for the Burnt Flavour  
 

 
Earlier work suggested that we would be most able to predict the ‘DMS’ attribute. 
This is borne out in practice, see figure 9, with out of sample testing showing a 
correlation coefficient of 0.92. This time the network is accurately able to predict the 
low and mid range values but still lacks the ability to predict the very high extremes. 
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Figure 9: Neural Network DMS Flavour Prediction Vs Sensory Results 
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Beer Flavour Optimisation 
Currently two neural network models have been built, which are to a reasonable 
degree able to predict the ‘Burnt’ and ‘DMS’ characteristics. In total these models 
have sixteen inputs of which six are shared by both characteristics. The limitation of 
these models is that they only predict in one direction. That is, they will only predict 
sensory flavours from the analytical inputs. It would perhaps be more useful if they 
could be reversed so that given a target sensory characteristic they would calculate the 
required analytical inputs. This problem can not be solved by conventional algebra. 
However it is known what a good solution would look like, i.e. when the predicted 
and target sensory values are identical and therefore it is possible to solve this 
problem using a genetic algorithm, see figure 10. 
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Figure 10: Flavour Optimiser 
 
 
CONCLUSIONS 

Can Beer Flavour Be Predicted From Analytical Results ? Today the answer is a 
conditional yes, but only for a very limited number of flavours. Sensory response is 
extremely complex, with many potential interactions and hugely variable sensitivity 
thresholds, from % to parts per trillion. Standard instrumental analysis tends to be of 
gross parameters and many flavour active compounds are simply not measured for 
practical or economical reasons. The relationship of flavour and analysis can only be 
effectively modelled if a significant number of flavour contributory analytes are 
measured. What is more, it is not just the obvious flavour active materials but also 
mouthfeel and physical contributors to the overall sensory profile that should be 
considered. 
With further development of the input parameters the accuracy of the neural network 
models will improve. 
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FURTHER WORK 

However what is most exciting, is that these techniques show much potential. They 
have demonstrated an ability to mine data across disparate data sources and develop 
credible models. Such models, which can represent complex relationships, can be 
used as the basis for process optimisation. 
This paper has concentrated on sensory and analytical data. However our business is 
much wider than this. Even limiting ourselves to the supply chain, many breweries 
have substantial quantities of information relating to: 
 
1. Raw Materials 
2. Process Conditions 
3. Analytical Results 
4. Sensory and Consumer Preference Data 
 
There are some broad understandings of relationships, but a poor understanding 
across the whole process. The use of neural networks and genetic algorithms offers 
the possibility of modelling across the whole process, from raw materials and process 
parameters to the preferences of the consumer.  
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